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Abstract-An analysis is carried out to determine the distribution of surface temperature along a flat 
plate experiencing simultaneous convective heat transfer, radiative exchange with the environment, 
aerodynamic heating, and internal heat sources or sinks. Both laminar and turbulent boundary 
layer flows are considered. Numerical results are presented for a wide range of the goveming para- 
meters; these are compared with simplified solutions based on local application of heat-transfer 
coefficients for uniform wall temperature and for uniform heat flux. 

The problem is treated within the framework of the thermal boundary layer with prescribed heat 
flux. The initial part of the paper is devoted to establishing certain general results for such boundary 
layers. Exact solutions are obtained for power-law and series heat flux distributions. An approximate 
solution for arbitrarily varying surface heat flux is derived by superposing skp4imction solutions 

furnished by the integral energy equation. 
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NOMENCLATURE 

constants; 
reciprocal of n = 0 entries of Table 1; 
specific heat, constant pressure; 
radiant energy absorbed by plate/ 
time-area ; 
internal heat load/time-area; 
SUIl Of eRAD and &; 
dimensionless stream function; 
heat-transfer coefficient ; 
radiation coefficient, equation (27); 
convective coefficient for uniform 
heat flux; 
convective coefficient for uniform wall 
temperature; 
thermal conductivity; 
Nusselt number, hx/k; 
Prandtl number, c&k; 
convective heat flux/time-area; 
recovery factor, equation (21); 
Reynolds number, U&/Y; 
temperature ; 
free steam temperature ; 
free stream velocity; 
streamwise velocity component ; 

0, 
X 

X, 
x0, 

Y, 

transverse velocity component ; 
dimensionless coordinate, equation 
(26); 
streamwise coordinate; 
coordinate specifying heat flux distri- 
bution; 
transverse coordinate. 

Greek symbols 
a, absorptance; 
5 emittance; 

;I 
similarity variable, equation (2); 
dimensionless temperature, T,ITo,; 

I4 absolute viscosity; 
5, dummy coordinate; 
P> density ; 
a, &fan-Boltzmann constant ; 

49 dimensionless temperature, equation 
(3b) ; 

X9 dimensionless coordinate, equation 
(33). 

Subscripts 
aw, adiabatic wall condition; 
w, at the surface; 
W, in the free stream. 
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INTRODUCTION 

THERE has been considerable recent interest in 
boundary layer heat transfer under conditions of 
non-uniform thermal conditions at the surface. 
Such conditions may arise naturally in situations 
where several heat-transfer processes occur 
simultaneously, for instance, when the distribu- 
tion of surface temperature results from the 
combined action of radiation, convection with 
or without aerodynamic heating, and heat addi- 
tion or removal at the surface. This paper is 
concerned with the aforementioned heat-transfer 
problem for both cases wherein the boundary 
layer flow is laminar or is turbulent, 

Specific consideration is given here to flow 
over a flat plate which exchanges heat both by 
convection with the flowing fluid and by radia- 
tion with the environment (e.g. solar source, 
earth’s albedo, and so forth). The emissivity of 
the plate surface may be different from its 
absorptivity. There may be aerodynamic heating 
in the boundary layer and heat addition or re- 
moval at the plate surface. 

In carrying out the analysis, it is convenient to 
treat the problem within the framework of the 
thermal boundary-layer with prescribed surface 
heat flux. Correspondingly, the first part of the 
paper is devoted to establishing some general 
results for boundary-layer flows with prescribed 
heat flux. With these results in hand, considera- 
tion is then given to the problem of simultaneous 
radiation and convection. 

Previous contributions to the radiative-con- 
vective boundary layer are due to Lighthill [I] 
and to Cess [2]. Lighthill limited his considera- 
tions to determining the adiabatic wall tempera- 
ture distribution on an aerodynamically heated 
plate that was cooled by radiation at the plate 
surface; the boundary-layer flow was laminar. 
The problem was anaiysed by applying a super- 
position integral that was based on an approxi- 
mate solution of the boundary-layer energy 
equation for prescribed surface temperature. 
Numerical results were obtained for the limits of 
weak radiative effects and of strong radiative 
effects, and a curve was faired in the intermediate 
region. The analysis of Cess was aimed at deter- 
mining the first-order corrections to the convec- 
tive Nusselt number due to radiative exchange 
between the plate and the environment; both 

laminar and turbulent flows were considered. 
The boundary condition of uniform surface heat 
flux was imposed; aerodynamic heating was not 
included. The analysis took the form of a pertur- 
bation of the convective energy equation. The 
results of both Lighthill and Cess will be brought 
together with those of the present analysis in 
later sections of the paper. 

THERMAL BOUNDARY LAYER WITH 
PRESCRIBED HEAT FLUX 

The heat-transfer characteristics of forced- 
convection boundary-layer flows are typically 
solved for under the condition of prescribed 
surface temperature. Among all boundary- 
layer flows, the most extensive treatment has been 
accorded the flat plate. Numerous solutions for 
both laminar and turbulent flow exist for the 
case of the isothermal plate. For the case of 
prescribednon-uniform surface temperature, two 
classes of solutions exist for the laminar boundary 
layer. The first of these includes exact similarity 
solutions for temperature variations having the 
specific form: 

for instance, references [3] and [4]. The second 
accommodates any distribution of surface tem- 
perature as input to a superposition integral, 
the latter having been constructed from approxi- 
mate solutions for a step change in temperature 
applied downstream of the hydrodynamic 
leading edge; for instance, references [5, 6. 7, 
and I]. For the t~bulent boundary layer, 
treatment of the non-isothermal case has 
been confined to the superposition formulation 
18,. 91. 

It is the aim of this section of the paper to 
provide results for the-prescribed heat flux case 
which colnplelnent those just cited for the case 
of prescribed surface temperature. Consideration 
will be given first to laminar flow over a flat plate, 
after which the turbulent case will be considered. 
The analysis that follows is initially concerned 
with constant-property, non-dissipative flows. 
Later, the results are modified to include the 
effects of viscous dissipation. Fluid property 
variations may be accounted for by evaluating 
the results at a suitable reference temperature. 
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Power-law and series heat flux distributions, corresponding to these cases have been utilized 
laminar in computing a Nusselt number Nu defined as 

Exact similarity solutions of the boundary- follows 
layer energy equation can be found for power- 
law heat flux distributions of the form 

h = q/(TW - Tm), Niis = hx/k (7) 

q = bx?’ 
(1j Taking cognizance of equation (6), one finds 

wherein b is a constant and n may be integral or NUS 1 

non-integral. The starting point of the analysis is @izp,113 = 2pr113$(0) (8) 
z 

the boundary-layer energy equation for constant- 
property, non-dissipative flow over a flat plate 

where the factor Prl/3 has been included to 
essentially eliminate the effect of Prandtl 

c’T aT k ST 
(2) 

number. The dimensionless grouping appearing 
“zvfrl$=P”,@* on the left of equation (8) is listed in Table 1. 

If one introduces the Blasius variables 

~---. ---.-.- 
Pr 

1‘ ..- .= ‘$(,f - 
u, 

7jf’) (3a) II 0.7 1 10 100 
---~ __---- 

and additionally defines a temperature simiI~ity 
variable # as 

4(~) = (T - T,) I ‘5 Re;@ (3b) 

then, there is obtained 

4” = Pr[(2n + l)f+ --&‘I. (4) 

0 0.45716 0*45897 0.46318 0.46363 

: 
0%&%4 060849 060938 0.60968 
O-70467 0.70562 0.70766 0.7079 1 

,B 

0.84653 0.84724 0.84868 0.84890 

0.95238 1.1129 0.95293 1.1133 0.9541 1.1141 I 0.95420 1.1142 

The boundary conditions require that aT/ay = 
- q/k at the plate surface and that T + T, in 
the free stream. In terms of the new variables, the 
boundary conditions become 

# (0) = - 1, #(oo) = 0. (5) 

The result of greatest interest here is the sur- 
face temperature distribution corresponding to 
the prescribed heat flux. From equation (3b), 
one finds 

Upon inspecting the table, one sees very little 
effect of Prandtl number. In addition, it is seen 
that the Nusselt number increases with in- 
creasing n. This is a direct consequence of a 
thinning of the thermal boundary layer. The 
Nusselt number results of Table 1 can be cor- 
related within 2 per cent by the following simple 
relationship 

TW - T, = ZF ~e~l~z~(0) N x%+1/2. (6) 

It is thus seen that for a surface heat flux varying 
as xn, the wall temperature varies as xn +1/a. In 
addition, numerical results for the surface tem- 
perature variation depend on the quantity $fO). 

Solutions of equation (4) subject to the bound- 
ary conditions (5) have been carried out numeric- 
ally for Prandtl numbers of 0.7, I, 10, and 100 
for R = 0, 1. 2, 4, 6, and 10. The 4(O) values 

NU, (if + 1)3’S 
Re;/2&113 ’ C ’ (9) 

The constant C is the reciprocal of the entries in 
the n = 0 row of the table. 

Although the present formulation is intended 
to provide the surface temperature correspond- 
ing to a prescribed heat flux q - ,x-n, the results 
may also be used to determine the surface heat 
flux corresponding to a prescribed temperature 
variation (T, - Tm) N xff+l’z. Thus, the present 
solutions supplement existing solutions for 
prescribed surface temperature. 
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Consideration may next be given to the case 
wherein the surface heat flux varies as 

q = c &&xn (10) 
in which the exponents n are not restricted to be 
integers. Corresponding to the variation specified 
by equation (lo), one may propose a temperature 
solution of the form 

T - T, = F Re;‘la x b~~~~~)xn, 

T,, - T, = ;Re; li2 Pr-113x b&Pr~/3r&,(O)]x~ 

(11) 
By making use of the linearity of the energy 
equation, it can be shown that Qln is governed by 
equations (4) and (5). Therefore, the solutions 
for the power-law heat flux, equation (I), can be 
employed for the series heat flux distribution, 
equation (10). Correspondingly, the bracketed 
quantity in equation (11) is equal to the reciprocal 
of the numbers listed in Table 1. 

Arbitrary heat flux distribution, lmninar 
The foregoing analysis provides exact solutions 

corresponding to heat flux distributions that can 
be represented either in the form of equations 
(10) or (1). To accommodate completely arbi- 
trary heat flux distributions, it is necessary to 
pass to a superposition-integral type of solution. 
To construct such a solution, one must first 
obtain results for the case of a step change in 
surface heat flux applied at a position down- 
stream of the hy~od~~c leading edge. 

Specifically, consideration is given to a plate 
which is unheated in the region 0 G x < xo and 
is uniformly heated for all x > XO. It is not 
possible to derive an exact solution correspond- 
ing to this heating condition. However, an 
approximate solution may be obtained by apply- 
ing the integral form of the bonds-layer 
energy equation. Indeed, such an analysis is 
contained in the text by Eckert and Drake [5l 
for the case of a step-change in wall temperature 
at x0. That analysis may be utilized for the step 
change in heat flux by replacing their & by 
- 2q ~~13k, wherein 6t is the thickness of the 
thermal boundary layer. Following through the 
sequence of operations as in the aforementioned 
reference, one finds 

W’CO=~&~~; [ 1 
1-: 

113 

, x > SO 

5 

(12) 
The constant Cwhich follows from the integral- 

method analysis is 2.39. However, we will set 
aside this value and utilize instead the numerical 
values from the exact, previously obtained 
solutions of the boundary-layer energy equation 
for uniform wall heat &nt. In particular, for 

= 0, equation (12) reduces to the dimension- 
& form 

NUZ 1 
k-3=-6' (131 

2 

It is proposed that the constant C be taken as the 
reciprocal of the entries in the n = 0 row of 
Table 1. In essence, this represents a matching of 
the approximate and exact solutions for the 
uniformly heated plate. The foregoing procedure 
is entirely justifiable in the interests of obtaining 
the most accurate results possible. Indeed, the 
main utility of the solution embodied in equa- 
tion (12) is in providing the delay factor 
[I - (xo/X)]r’s. 

The extension of equation (12) to the case of 
arbitrary distributions of surface heat flux is 
a~ornp~sh~ by replacing q by dq&), and then 
integrating over x0 from 0 to the position x at 
which Tw is to be determined. 

(14) 

This integral has to be regarded in the Stieltjes 
sense in order to accommodate step jumps in q. 
A more convenient form of the foregoing expres- 
sion is achieved by an inte~ation by parts, thus 

Tw - Tm = c/3 x2/3 5 J cl(xo) R,owl~prUS k (x - x0)2/3 dxO 
0 

(15) 

Equation (15) can, in principle, be utilized in 
computing the distribution of surface tempera- 
ture for any prescribed distribution of surface 
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heat flux. Indeed, q(x,) may include step jumps 
as well as continuous variations ; moreover, 
q(0) need not be zero. 

It is of definite interest to subject equation (15) 
to all possible comparisons with available exact 
solutions. The purpose of such comparisons 
would be to establish confidence in the validity 
of the superposition integral, especially since the 
delay factor [ 1 - (xO/x)]i’s which lies at the heart 
of the superposition was derived from an energy- 
integral solution. Exact solutions for power-law 
distributions in the form of equation (1) have 
been determined in the preceding portion of this 
paper. These solutions will be employed in 
investigating the validity of equation (15). 

Upon introducing the heat flux distribution 
q = bxn into equation (15) and integrating, one 
finds 

where 

B(n + 1, 4) = ‘(;(;:“;:“. (17) 

The /3 and I respectively represent the t9 and P 
functions; numerical values of the latter are 
available in various handbooks and tabulations. 
It should be emphasized that the n appearing in 
equations (16) and (17) need not be an integer. 

As previously noted, C is to be chosen to 
bring about agreement of the integral and exact 
solutions for IZ = 0. Corresponding to this 
choice, the values of Nuz/Re:12Prl’3 as computed 
from equation (16) for Pr = 1 are O-61196, 
O-70562, O-85937, O-96760 and 1.1315 respec- 
tively for n = 1,2,4,6 and 10. Upon comparing 
these with the exact solutions listed in Table 1, it 
is seen that excellent agreement prevails. Indeed, 
the deviations in any case are no more than 1.5 
per cent. A similar level of accuracy is found to 
exist for the other Prandtl numbers. The fore- 
going comparisons offer strong support of the 
accuracy of the superposition solution (15). 

heat flux distribution. However, the case of an 
arbitrary heat flux distribution can be treated by 
superposition, provided that the solution is 
available for a step change in heat flux applied 
downstream of the hydrodynamic leading edge. 
The required step-function solution can be 
derived by employing the usual semi-empirical 
methods of turbulent flow. Fortunately, this 
rather tedious task can be circumvented by 
making use of a theorem recently stated by 
Hanna and Meyers [lo]. These investigators 
have shown that if the delay factor correspond- 
ing to a step-change in surface temperature is 
[l - (x,/x)t]3, then the delay factor for a step- 
change in surface heat flux is [l - (x0/x)13. This 
theorem holds if the form of the temperature 
profiles is the same for the two problems. For the 
turbulent boundary layer, Reynolds et al. [ll] 
have verified that the Seban-Scesa [8] delay 
factor, [ 1 - (x0/x)sIrO]l19, leads to results in good 
agreement with experiment for the prescribed 
temperature case. The corresponding delay 
factor for the prescribed heat flux case is 

[l - (x,/x)]i’9. (18) 

With this and with the correlation* of refer- 
ence [l 11, the surface temperature distribution 
corresponding to a step-change in heat flux 
applied at x0 is 

’ 

x > x0. (19) 

This equation is intended to apply for constant- 
property, non-dissipative flow. 

The generalization of equation (19) to apply 
to cases of arbitrarily variable surface heat flux 
is carried out along lines similar to those des- 
cribed for the laminar case. The end result of 
these operations is 

Tw - Tm = 
X8’9/9k z 4(x0) ho 

s 0*0296Re215Pr3/5 (x - x0)8/9 (20) 
0 

Arbitrary heat flux distribution, turbulent 
The turbulent thermal boundary layer does 

not lend itself readily to solution for a power-law 

* The actual correlation contains a factor (T,/T,)O” to 
account for variable gas properties. In the present investi- 
gation, this factor will be omitted in favor of a reference 
temperature for evaluating the properties. 
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Aerodynamic heating 
In applications involving highspeed flow, 

there may be appreciable dissipation of mech- 
anical energy in the boundary layer. In account- 
ing for this effect, it is customary to solve first 
for the so-called adiabatic wall temperature Taw. 
This is the temperature that the surface would 
achieve if the convective heat transfer were 
locally zero. For the flow of gases over a flat 
plate, it is customary to write 

Taw - T, = RU32c, (21) 

in which R = Prli2, laminar flow (21a) 

R = Pr113, turbulent flow. (21b) 

Then, with the adiabatic wall temperature in 
hand, one may generalize equations (15) and 
(20) to apply to flows with aerodynamic heating. 
Indeed, it is only necessary to replace T, by 
Taw in the aforementioned equations. The fluid 
properties in these equations are to be evaluated 
at the reference temperature, e.g. Eckert [12]. 

SIMULTANEOUS CONVECTIVE AND 
RADIATIVE HEAT TRANSFER 

Consideration is now given to a flat plate that 
exchanges heat by convection with a flowing 
fluid and by radiation with the surrounding 
environment. The fluid is assumed to be trans- 
parent to radiation and is therefore necessarily 
a gas. 

The governing equations and their solution 
Suppose that radiation arriving per unit time 

and area at the plate surface from various sources 
in the environment is described by quantities 
e,l, er2,. , . , em. In general, the absorptance a of 
the surface for each of these radiation quantities 
may be different (especially if the spectral distri- 
butions are different). If eRAD denotes the rate 
at which radiant energy is locally absorbed per 
unit time and area, then 

eRAD = c W?rl. (22) 

The local emission of the plate surface per unit 
time and area is l uTi(x), where E is the emittance. 
In addition, for the sake of generality, one may 
suppose that there is an energy flux eP that must 
be transferred from the plate to the fluid and to 
the environment (e.g. an internal heat source or 

heat sink). In general, both eRAD and ep may vary 
with x. 

In order that energy conservation be satisfied 
at each point on the plate surface, it follows that 
the convective heat transfer 4 per unit time and 
area is given by 

q(X) = eRAD(X) - cuT,4(x) + ep(X). (23) 

Equation (23) is a requisite for the preservation 
of steady-state conditions. In the development 
that follows, it will be assumed that (eRAD + eP) 
is a known constant, to be denoted by e and 
referred to as the total heat load. With this, the 
foregoing becomes 

q = e - UT,(X). (23a) 

It may be noted that there is no essential dif- 
ficulty in treating the case e = e(x). However, it 
is natural to begin with e = constant; also, this 
facilitates comparison with the analysis of 
Cess [2]. 

Attention may now be given to determining 
the surface temperature corresponding to the 
heat flux distribution of equation (23a). For 
laminar flow with aerodynamic heating, one 
replaces Too in equation (15) with Taw and arrives 
at 

(24) 

Then, upon substitution of equation (23a) and 
integration, there follows after non-dimensional 
rearrangement 

qx, = 1 -f- Xi’2 2 
i 1 aw 

wherein 6’ = Tw/Taw, x = (hRAD/hUHF)2. (26) 

The 0 variable compares the wall temperature 
at x with the adiabatic wall temperature due to 
convective transport, equation (21). The X 
variable is readily interpreted by displaying 
hRAD and huffF 

hR*D = wT&, ~UHF = (k/Cx)Re$2Prl/3. (27) 
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From these, it is seen that Xis proportional to x. 
The GRAD is a general measure of the strength 
of the surface radiation and has the units of a 
heat-transfer coefficient. Inasmuch as TaW is 
independent of x, so is hRAD. The hVHF is the 
local heat-transfer coefficient for laminar flow 
over a plate with uniform heat flux; clearly, 
hvHF N x-lt2. Therefore, hRAD/hoHF is a meas- 
ure of the relative strength of the surface radia- 
tion and the convection, and X has a correspond- 
ing meaning. At the leading edge, hVHF --f CC 
and hRAD/hoHF = 0. With increasing down- 
stream distances, hRAD/hoHF increases mono- 
tonically. 

The parameter e/EaT& compares the external 
heat load with the rate at which energy is radiated 
from a plate surface at temperature TaW. 

Consideration may now be given to solving 
equation (25), which constitutes a non-linear 
integral equation for the wall temperature distri- 
bution e(X). An exact closed-form solution can- 
not be found; however, highly-accurate numeri- 
cal solutions can be carried out without difficulty. 
For this purpose, one divides the region between 
X = 0 and X = Xmax into N intervals AX = 
Xmax/N. Xmax represents the largest X value at 
which results are desired. Any X value in the 
range of 0 < X < X,,, is characterized by 
X = jAX; additionally, [ = iAX. The interval 
AX is chosen sufficiently small to insure that 
within a desired accuracy 

(f+ 1)A.x (i+ 1)AX 

J 
-!t!% d[ = q 

J 

dt 
(X - ty’3 (x _ ()2/3 c2@ 

IAX iAX 

in which 

q = g(e; + eiq,,). (29) 
With this, equation (25) becomes 

I 

e, = 1 + Xl’2 
{ 

--& ,“, + j-if3 
c 

eQ_i 
i=l 

[(j - i)i/a - (j - i + 1)1/3]]. (30) 

In applying equation (30), one uses a predictor- 
corrector technique as described below. First of 
all, it may be noted that e(O) = :l, and this is 

taken as the starting point of the computation. 
Proceeding to the next point X = 1 x AX 
(i.e. j = l), one writes 

e1 = 1 + (AX)1’2 {s- 9} (31) 

i?; is first evaluated as 6; = 1, and a value of 81 
is then computed. With this, one re-evaluates 8: 
in accordance with the averaging indicated in 
equation (29), and this leads to a corrected value 
of 81. A second correction for 81 might be carried 
out, but this was not necessary in view of the 
small step size employed. Then, passing on to 
the point X = 2 x AX, one re-applies equation 
(30) 

e2 = 1 + (2AX)1’2 -& + (2)-l/3 
aw 

[q(l - 21’3) - @ 
> 

. (32) 

Inasmuch as 60 and 81 are known, q can be 
computed in accordance with equation (29); 
qis first evaluated as 6:. With these, a tentative 
value of 82 is computed from equation (32). 
This is then utilized in conjunction with 81 to re- 
evaluateq, and in turn, this permits the compu- 
tation of a refined value of 62. The determination 
0f e3, e4, . . . proceeds in a similar manner. 

From the foregoing description and from 
equations (31) and (32), it is evident that the 
computation procedure makes repetitive use of 
the third root of integers. Consequently, to 
minimize the use of computer time, the third 
roots were determined at the very beginning of 
the computation and then stored. In addition, 
it was found possible to increase the step size at 
larger values of X without loss of accuracy. 

Preliminary solutions for e as a function of X 
were carried out for various step sizes. By study 
of these results, one could select step sizes for the 
final runs that would insure very high accuracy. 
Indeed, in all cases, the$nal results are believed 
accurate to at least one andperhaps two sign$cant 
figures beyond those shown in the forthcoming 
plots. The presentation and discussion of results 
will be delayed until after the computation 
procedure for the turbulent case has been 
outlined. 
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For turbulent boundary-layer flow, one pro- 
ceeds as in the foregoing, except that the basic 
equations are now (20), (21) and (21b). Into 
these, one introduces the convective heat flux 
as indicated by equation (23a). The resulting 
integral equation for Tw can be rendered dimen- 
sionless by defining a coordinate X = (hRAD/ 
hum)5 and a temperature variable 6 = TwiTam. 
Since hxmjh Em? - XI/~ for the turbulent case, 
it follows that such an X is proportional to x. 
However, this choice for the X coordinate is 
impractical inasmuch as an exceedingly small 
step size AX would be required for computations 
at small X. Instead, one defines 

x = h~~~~huH~ (33) 

wherein AHRD remains as stated in equation (27) 
while hues is the heat-transfer coefficient for 
turbulent flow over a plate with uniform heat 
flux 

/Z UHF = 0*0296(~~x) Re,f5Pr3’5 (34) 

It is evident that x N x1/5. 
The governing integral equation is reduced to 

a tractable form by a procedure identical to that 
described for the laminar case. If x = jAx and 
I = iAx, the algebraic approximation to the 
integral equation for the t~bulent case is 

f 

@=1+x g- 1 1 + j-5’9 c F- 
7-l 

i=l 

[(j5 - i5)1’9 - (j5 -- (i - 1)5)1’9] 
1 

. (35) 

The numerical treatment of this equation is 
similar to that discussed in relation to equation 
(30). 

D~t~ib~tio~ of surface te~Fer~tur~ 
Results for the surface temperature distribu- 

tion have been computed as described in the 
foregoing and are presented as solid lines in 
Figs. I and 2. The first of these corresponds to 
laminar flow and the second to turbulent flow. 
The ordinate variable is the ratio of the local 
surface temperature at position x to the adiabatic 
wall temperature due to convection alone, 
equation (21). The abscissa for the laminar case 

is proportional to S2, while that for the turbu- 
lent case is proportional to x1/5. Further, the 
abscissa can be interpreted as a ratio of radiative 
to convective heat-transfer coeffcients, as is 
noted on the figures. The constant C in the 
abscissa variable of Fig. 1 is the reciprocal of 
the n = 0 entries of Table 1. The curves are 
parameterized by e/mT&. In addition to the 
solid lines, other curves are presented in the 
figures. These will be discussed later. 

An overall inspection of the figures reveals 
that the surface temperature may either increase 
or decrease along the plate depending on the 
magnitude of e/wT&. For values of this para- 
meter greater than unity, the temperature in- 
creases; the opposite variation occurs when the 
parameter is less than unity. For the case of 
el tuTaw 4 = 1, it is seen that K1: = aw T at all 
locations. 

These trends may be made plausible by physi- 
cal reasoning. In the absence of a heat load 
(input) e, there is an energy loss from the 
surface due to radiation. This heat must be 
supplied to the plate surface by convection, 
i.e. q - (TEo - T&J < 0. Therefore, Tw < Tow. 
Inasmuch as the convective coefficient decreases 
with x at a faster rate than does q, it follows that 
the difference between Tw and Taw increases with 
increasing x. For moderate heat loads e, the heat 
loss due to radiation still requires a convective 
heat transfer into the plate in order to satisfy 
the local energy balance, equation (23a). Cor- 
respondingly, Tw < Tam. When e/mT&, = 1, 
the heal load is precisely in balance with the 
surface radiation and the convection is not 
called upon to transfer heat. For heating condi- 
tions such that e/auT& > 1, the surface tem- 
perature must rise above Taw in order that con- 
vection and surface radiation may work together 
to dissipate the larger heat load. 

At the far right of each figure is an array of 
horizontal line segments that are labelled 
asymptotes. These apply to the condition 
hR&hu~~ -+ M. This implies that the convec- 
tive heat transfer q approaches zero, so that the 
heat balance (23a) becomes e = EOT$ From 
this, it follows that 

l/4 

(36)’ 
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By inspection of the figures, it is seen that the problem under turbulent conditions could best 
asymptotes are approached more rapidly for be carried out with the algebraic equation (37) 
cases in which ~/CUT& is near unity. instead of the integral equation (35). 

In addition to the solutions of the integral 
equations (solid lines, Figs. 1 and 2), auxiliary 
approximate calculations have also been carried 
out. These are based on the local energy balance. 
equation (23a), into which has been substituted 
q = h*(T,, ~ Tat,,). The convective coefficient h* 
will, in general, depend on the specific distribu- 
tion of surface temperature or of surface heat 
flux; consequently, h* will not be known n 
ptkri. Upon rearrangement, one finds 

Figures 1 and 2 also contain curves which 
represent the results of prior investigations by 
Lighthill and by Cess. The former limited his 
considerations to the laminar case with e ~~~ 0. 
i.e. radiative cooling of an aerodynamically 
heated plate. Series solutions for small and large 
x are shown as long-dashed lines; these are con- 
nected by a dotted curve that corresponds to an 
interpolation. In general, Lighthill’s results lie 
slightly higher than those of the present analysis; 
but, the agreement is quite satisfactory. 

It is natural to seek solutions for the surface 
temperature distribution corresponding to heat- 
transfer coefficients for the two standard cases 
of uniform heat flux (UHF) and uniform wall 
temperature (UWT). Such solutions have been 
carried out and are plotted in Fig. 1 as dash-dot 
(UWT) and dash-double dot (UHF) lines. It is 
seen that, in general, the results based on 
ht_HF and /lC’rI.T bracket the exact solutions 
(solid lines) for the surface temperature distribu- 
tion. Indeed, the bracketing curves form rather 
close bounds on the exact solution. For 
e/cuT& < 1, the computation based on /~[‘HJ’ 
overestimates the local surface temperature 
while that based on hr:rr~ underestimates the 
local surface temperature. For e/coT,:,,, > 1. 
opposite findings apply. 

Cess extended consideration to both laminar 
and turbulent flows. Aerodynamic heating was 
neglected, but the analysis is readily generalized 
to include these effects. Cess’ results, originally 
reported as Nusselt numbers, have beenrephrased 
in terms of the temperature ratio Tw/Taw and 
are plotted in Figs. 1 and 2 as short-dashed lines. 
It is seen from the figures that these are valid 
only in the range of small radiative effects; this 
is precisely the condition for which the Cess 
analysis was carried out. 

CONCLUDlNG REMARKS 

For the turbulent case, the heat-transfer 
coefficients for uniform heat flux and uniform 
wall temperature are essentially identical. When 
equation (37) is solved for the condition 
h* = hL,HF = hL,WT and the results plotted in 
Fig. 2, it is found that the points fall very close 
to the solid curves that represent the solution of 
the integral equation (35). Indeed, any differences 
would be obscured during the preparation of ink 
drawings. This finding reaffirms the well-estab- 
lished physical concept that a turbulent boundary 
layer has a “poor memory” relative to the details 
of the upstream thermal boundary conditions. 
It would thus appear that any additional solu- 
tions for the convective-radiative heat-transfer 

It may be of interest to point out the particular 
advantage of using the prescribed-heat-flux 
formulation in solving problems of the type 
considered here. The essential point is that one 
deals with linear differences in position 
[ 1 - (x,Jx)]~, for instance, equations (12) and 
(19). Thus, after applying the mean value theorem 
in equation (28), the integration results in a 
simple function. On the other hand, had the 
prescribed-wall-temperature formulation been 
employed, much more complicated functions 
would have been obtained at this point in the 
analysis. This is because in the latter formulation, 
the differences in position are non-linear, that is 

[1 

I. 

2. 

- (x0/x)“]‘. - 
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R&sum&-Une analyse est effectuCe pour dCterminer la distribution de temptrature pariitale le long 
d’une plaque plane soumise simultanbment ?I un transport de chaleur par convection, g un &change 
par rayonnement avec l’ambiance, ii un Cchauffement aerodynamique, et B des sources ou des puits de 
chaleur internes. On considere Q la fois des Ccoulements de couche limite iaminaire et turbulente. 
Des rtsultats num~riques sont pr&+ent& pour une large gamme des parametres influents; ceux-ci 
sont compar& avec des solutions simpIifi&es basics sur l’application Iocaie des coefFicients de transport 
de chaleur pour une tempkrature parittale uniforme et pour un flux de chaleur uniforme. 

Le probleme est trait6 dans le cadre de la couche limite thermique avec un flux de chaleur imposi. 
La partie initiale de I’article est consacrte & I’Ctablissement de certains rCsultats gBntraux pour de 
t:lies couches limites. Des solutions exactes sont obtenues pour des distributions de flux de chaleur 
en puissance et sous forme de stries. Une solution approchCe pour un flux de chaleur parietal variant 
arbitrairement est obtenue en superposant des solutions en marche d’escalier fournies par I’Cquation 

integrale de I’Cnergie. 

Zusammenfassung-Urn die Temperaturverteilung an der Oberfllche einer ebenen Platte zu bestimmen, 
die gleichzeitig WBrmetibergang durch Konvektion, Strahlungsaustausch mit der Umgebung und 
aerodynamische Erwlrmung erfghrt und bei welcher innere Wlrmequellen und -senken auftreten, 
wird eine Analyse ausgefiihrt. Es werden sowohl die laminaren wie such die turbulenten Grenzschicht- 
str~mungen betrachtet. Fiir einen weiten Bereich der ~stimmenden Parameter werden numerische 
Ergebnisse angegeben. Sie werden mit vereinfachten Lasungen verglichen, die auf der lokalen Ver- 
wendung der WPrmetibergangszahl bei gleichftirmiger Wandtemperatur und bei gleichfiirmiger 
Wirmestromdichte beruhen. 

Das Problem wird innerhalb der Rahmenarbeit iiber die thermische Grenzschicht mit vorgegebener 
WIrmestromdichte behandelt. Der erste Teil der Abhandlung befasst sich mit der Aufstellung bestimm- 
ter allgemeiner Resultate fiir solche Grenzschichten. Fiir Verteilungen der WHrmestromdichte 
nach Potenzgesetzen und -reihen ergaben sich exakte LGsungen. Fiir willkiirlich veriinderliche 
W~rmestromdichten an der Oberfllche wird eine N~herun~l~sung abgeleitet, indem Lasungen in 
Form Stufenfunktionen, die sich aus der Integral-Energiegleichung ergeben, superponiert werden. 

AHHoTaqmI-13 ~arrrroii pa(ioTe npoBe;lerr altam pacnpexeneam TeMnepaTgpbInOeepX~rOCTII 

BxO.% ItnOcKOff IIJIaCTIIHbI IIpli OfiHOBpeMeHHOM ;(eliCTBlIH KOHBeKTMBHOI'O IIepeHOCZi TeILG, 

nysrrcTor0 oii~eria c oh-pymalomeit cpexoir, anpozMHaMliseeKor0 irarpeaa a ~I~SLL~~B~I miyrpen- 
IfHX l~~TOYll~~ISOB H CTOKOB TeIUta. PW32~OTpeHLI KaK ~aM~iHapHOe, TBK fl T~p~y~eHT~rOe 

T~Y~KEIR z3 ~orpa~~~~qlion~ caoe. ~Pe~CTaB~eH~ Y~~C~eHHbIe peayJIbTaTM gZ5I ~~~POKOrO 

~HaIIa2Otia OCHOBIIbIX IIapaMeTpOB K ZaliO HX CpaBHeHRe C ~IIpOIUeKHbIMH pI?.IiIeHHF3MH, 
IIOJQV!I~~~LI!S~M Ha OCHOBe JIOKWIbHO~O IICtIOJIb3OBaHClH K03~~ylI~MeHTOB TeIIJIOO6MeW.i nJIfl 

O#SOpOAHOir TeMIIepaTypbI CTeHKIK CI O;lHOpO~l~OI'O TeIIJIOBOrO IIOTOKa. 



448 E. M. SPARROW and S. H. LIN 

3aAasa paccMaTpmaeTcn B paMKax TemoBoro norpamisaoro CJIOR np54 3aAaaHom TennoBoM 
IIOTOKe. HaWnbHaH WCTb CTaTbH IIOCB~UWHa J'CTaHOBJIeHMH, OIIpt?J@IeHKbIX 06LlWX pe3y- 

JlbTaTOB AJIH TElKElX IiOrpaHMYHbIX CJIOeB. nOJIyWHbI TO'lHbIe PeIIIeHHH AJIH p3CIIpeAeneHMti 

TeIIJIOBOrO IIOTOKB, 3aAaHHblX CTelEHHbIM BBKOHOM H B BAW? p33JiOH03HEWI B PRA. nOJIyWH0 

Ip6JmKeHHOe pelIIeHHe AJIH IIpOH3BOJIbHO H3MeHlUOII@CH BWIWIHHbI TeIIJIOBOrO IIOTOKZI Ha 

IIOBepXHOCTR llyT8M CylfepIIO3MqZlH CTyIIeHWThIX peIIIf?HH~, nOJl)WHHblX II3 MHTt?~PEUlbHO~O 

J'paBHeHHH 3H‘?pIWi. 


