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Abstract—An analysis is carried out to determine the distribution of surface temperature along a flat
plate experiencing simultaneous convective heat transfer, radiative exchange with the environment,
aerodynamic heating, and internal heat sources or sinks. Both laminar and turbulent boundary
layer flows are considered. Numerical results are presented for a wide range of the governing para-
meters; these are compared with simplified solutions based on local application of heat-transfer
coefficients for uniform wall temperature and for uniform heat flux.

The problem is treated within the framework of the thermal boundary layer with prescribed heat

flux. The initial part of the paper is devoted to establishing certain general results for such boundary
layers. Exact solutions are obtained for power-law and series heat flux distributions. An approximate
solution for arbitrarily varying surface heat flux is derived by superposing step-function solutions
furnished by the integral energy equation.

a,b,

Cp,
€RAD,

NOMENCLATURE
constants;
reciprocal of n = 0 entries of Table 1;
specific heat, constant pressure;
radiant energy absorbed by plate/
time-area;
internal heat load/time-area;
sum of egap and ep;
dimensionless stream function;
heat-transfer coefficient;
radiation coefficient, equation (27);
convective coefficient for uniform
heat flux;
convective coefficient for uniform wall
temperature;
thermal conductivity;
Nusselt number, Ax/k;
Prandtl number, cpu/k;
convective heat flux/time-area;
recovery factor, equation (21);
Reynolds number, Uox/v;
temperature;;
free steam temperature;
free stream velocity;
streamwise velocity component;

v, transverse velocity component;

X, dimensionless coordinate, equation
(26);

X, streamwise coordinate;

Xo, coordinate specifying heat flux distri-
bution;

¥ transverse coordinate,

Greek symbols

a, absorptance;

€, emittance;

7, similarity variable, equation (2);

9, dimensionless temperature, Ty/Taw;

iy absolute viscosity;

¢, dummy coordinate;

P, density;

o, Stefan-Boltzmann constant;

¢, dimensionless temperature, equation
(3b);

Xs dimensionless coordinate, equation
(33).

Subscripts

aw, adiabatic wall condition;

w, at the surface;

00, in the free stream.
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INTRODUCTION

THERE has been considerable recent interest in
boundary layer heat transfer under conditions of
non-uniform thermal conditions at the surface.
Such conditions may arise naturally in situations
where several heat-transfer processes occur
simultaneously, for instance, when the distribu-
tion of surface temperature results from the
combined action of radiation, convection with
or without aerodynamic heating, and heat addi-
tion or removal at the surface. This paper is
concerned with the aforementioned heat-transfer
problem for both cases wherein the boundary-
layer flow is laminar or is turbulent,

Specific consideration is given here to flow
over a flat plate which exchanges heat both by
convection with the flowing fluid and by radia-
tion with the environment {e.g. solar source,
earth’s albedo, and so forth). The emissivity of
the plate surface may be different from its
absorptivity. There may be aerodynamic heating
in the boundary layer and heat addition or re-
moval at the plate surface.

In carrying out the analysis, it is convenient to
treat the problem within the framework of the
thermal boundary-layer with prescribed surface
heat flux. Correspondingly, the first part of the
paper is devoted to establishing some general
results for boundary-layer flows with prescribed
heat flux. With these results in hand, considera-
tion is then given to the problem of simultaneous
radiation and convection.

Previous contributions to the radiative-con-
vective boundary layer are due to Lighthill [1]
and to Cess [2]. Lighthill limited his considera-
tions to determining the adiabatic wall tempera-
ture distribution on an aerodynamically heated
plate that was cooled by radiation at the plate
surface; the boundary-layer flow was laminar.
The problem was analysed by applying a super-
position integral that was based on an approxi-
mate solution of the boundary-layer energy
equation for prescribed surface temperature.
Numerical results were obtained for the limits of
weak radiative effects and of strong radiative
effects, and a curve was faired in the intermediate
region. The analysis of Cess was aimed at deter-
mining the first-order corrections to the convec-
tive Nusselt number due to radiative exchange
between the plate and the environment; both
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laminar and turbulent flows were considered.
The boundary condition of uniform surface heat
flux was imposed; aerodynamic heating was not
included. The analysis took the form of a pertur-
bation of the convective energy equation. The
results of both Lighthill and Cess will be brought
together with those of the present analysis in
later sections of the paper.

THERMAL BOUNDARY LAYER WITH
PRESCRIBED HEAT FLUX

The heat-transfer characteristics of forced-
convection boundary-layer flows are typically
solved for under the condition of prescribed
surface temperature. Among all boundary-
layer flows, the most extensive treatment has been
accorded the flat plate. Numerous solutions for
both laminar and turbulent flow exist for the
case of the isothermal plate. For the case of
prescribed non-uniform surface temperature, two
classes of solutions exist for the laminar boundary
layer. The first of these includes exact similarity
solutions for temperature variations having the
specific form:

Tw_ To,):axn or Tu‘— Ta)—-'_— Eanxn;

for instance, references [3] and [4]. The second
accommodates any distribution of surface tem-
perature as input to a superposition integral,
the latter having been constructed from approxi-
mate solutions for a step change in temperature
applied downstream of the hydrodynamic
leading edge; for instance, references [5, 6, 7,
and 1]. For the turbulent boundary layer,
treatment of the non-isothermal case has
been confined to the superposition formulation
[8,.9].

It is the aim of this section of the paper to
provide results for the prescribed heat flux case
which complement those just cited for the case
of prescribed surface temperature. Consideration
will be given first to laminar flow over a flat plate,
after which the turbulent case will be considered.
The analysis that follows is initially concerned
with constant-property, non-dissipative flows.
Later, the results are modified to include the
effects of viscous dissipation. Fluid property
variations may be accounted for by evaluating
the results at a suitable reference temperature.
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Power-law and series heat flux distributions,
laminar
Exact similarity solutions of the boundary-
layer energy equation can be found for power-
law heat flux distributions of the form

g = bx» M

wherein & is a constant and » may be integral or
non-integral. The starting point of the analysisis
the boundary-layer energy equation for constant-
property, non-dissipative flow over a flat plate

or | er kT 2
Yot e e o (
If one introduces the Blasius variables
y u E 4
2“ Relld Er—- prasd %f’
r Re‘1
= (f=af) (Y
[+ 0]

and additionally defines a temperature similarity
variable ¢ as

son =T =T [ Rzt (3b)
then, there is obtained
¢ == PriQ2n + Df'é — f¢]. C))

The boundary conditions require that ¢7/0y =
— glk at the plate surface and that T— T in
the free stream. In terms of the new variables, the
boundary conditions become

$(0) = —1, ¢(c0) =0, 3

The result of greatest interest here is the sur.
face temperature distribution corresponding to
the prescribed heat flux. From equation (3b),
one finds

T — Too = ,Z%J_C Re;124(0) ~ xn+172, (6)
It is thus seen that for a surface heat flux varying
as x®, the wall temperature varies as x®*1/2, In
addition, numerical results for the surface tem-
perature variation depend on the quantity ¢(0).

Solutions of equation (4) subject to the bound-
ary conditions (5) have been carried out numeric-
ally for Prandtl numbers of 0-7, 1, 10, and 100
for n=20, 1. 2, 4, 6, and 10. The $(0) values
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corresponding to these cases have been utilized
in computing a Nusselt number Nu defined as
follows

h = gq/(Tw — Tw), Nug = hx[k M
Taking cognizance of equation (6), one finds
T g ®
Re;/ZPrlm 2 Pr1/34(0)

where the factor Prl/3 has been included to
essentially eliminate the effect of Prandtl
number. The dimensionless grouping appearing
on the left of equation (8) is listed in Table 1.

Table 1. Nugy/Re 2Prii3 corvesponding to q ~ x".
Exact boundary layer solutions

Pr
n 07 1 10 100
0 045716  0-45897 046318  0-46363
i 060544  0-60849  0-60938  0-60968
2 0-70467 070562 070766  (-70791
4 0-84653  0-84724  (-84868  0-84890
6 0-95238  0-95293 (95411 0-95420
10 1-1129 1-1133 1-1141 1-1142

Upon inspecting the table, one sees very little
effect of Prandtl number. In addition, it is seen
that the Nusselt number increases with in-
creasing n. This is a direct consequence of a
thinning of the thermal boundary layer. The
Nusselt number results of Table 1 can be cor-
related within 2 per cent by the following simple
relationship

Nuz (a8
e'l/”}"r”3 = C ®)

The constant C is the reciprocal of the entries in
the n = 0 row of the table.

Although the present formulation is intended
to provide the surface temperature correspond-
ing to a prescribed heat flux ¢ ~ x*, the results
may also be used to determine the surface heat
flux corresponding to a prescribed temperature
variation (T — Tew) ~ x#11/2, Thus, the present
solutions supplement existing solutions for
prescribed surface temperature.
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Consideration may next be given to the case
wherein the surface heat flux varies as

q =2 bux® (10)
in which the exponents # are not restricted to be
integers. Corresponding to the variation specified
by equation (10), one may propose a temperature
solution of the form

2
T— T = fx ReY2S budn(n)x®,

Ty —To = ;Re;1/2Pr—1/32b,,[2Pr1/3¢,.(0)]x”
(11)

By making use of the linearity of the energy
equation, it can be shown that ¢y is governed by
equations (4) and (5). Therefore, the solutions
for the power-law heat flux, equation (1), can be
employed for the series heat flux distribution,
equation (10). Correspondingly, the bracketed
quantity in equation (11) is equal to the reciprocal
of the numbers listed in Table 1.

Arbitrary heat flux distribution, laminar

The foregoing analysis provides exact solutions
corresponding to heat flux distributions that can
be represented either in the form of equations
(10) or (1). To accommodate completely arbi-
trary heat flux distributions, it is necessary to
pass to a superposition-integral type of solution.
To construct such a solution, one must first
obtain results for the case of a step change in
surface heat flux applied at a position down-
stream of the hydrodynamic leading edge.

Specifically, consideration is given to a plate
which is unheated in the region 0 < x < xo and
is uniformly heated for all x > xo. It is not
possible to derive an exact solution correspond-
ing to this heating condition. However, an
approximate solution may be obtained by apply-
ing the integral form of the boundary-layer
energy equation. Indeed, such an analysis is
contained in the text by Eckert and Drake [5]
for the case of a step-change in wall temperature
at x,. That analysis may be utilized for the step-
change in heat flux by replacing their 8, by
- 2q 83k, wherein §; is the thickness of the
thermal boundary layer. Following through the
sequence of operations as in the aforementioned
reference, one finds
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C gx Xo|1/3

(12)

The constant C which follows from the integral-
method analysis is 2-39. However, we will set
aside this value and utilize instead the numerical
values from the exact, previously obtained
solutions of the boundary-layer energy equation
for uniform wall heat flux. In particular, for
xo = 0, equation (12) reduces to the dimension-
less form

Nux l
ReVPAR = ¢ (13)

It is proposed that the constant C be taken as the
reciprocal of the entries in the n = 0 row of
Table 1. In essence, this represents a matching of
the approximate and exact solutions for the
uniformly heated plate. The foregoing procedure
is entirely justifiable in the interests of obtaining
the most accurate results possible. Indeed, the
main utility of the solution embodied in equa-
tion (12) is in providing the delay factor
[1 — (xo/x)P3.

The extension of equation (12) to the case of
arbitrary distributions of surface heat flux is
accomplished by replacing ¢ by dg(x,), and then
integrating over x, from 0 to the position x at
which T, is to be determined.

C X f Xo 1/3
1]

(14)

This integral has to be regarded in the Stieltjes

sense in order to accommodate step jumps in ¢.

A more convenient form of the foregoing expres-

sion is achieved by an integration by parts, thus
x

Cj3 g(x0)

Xx2/3
Rel?Pri8 | | (x — xo)*/3
0

Tw—Tooz dxo

as

Equation (15) can, in principle, be utilized in
computing the distribution of surface tempera-
ture for any prescribed distribution of surface
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heat flux. Indeed, g(x,) may include step jumps
as well as continuous variations; moreover,
4(0) need not be zero.

It is of definite interest to subject equation (15)
to all possible comparisons with available exact
solutions. The purpose of such comparisons
would be to establish confidence in the validity
of the superposition integral, especially since the
delay factor [I — (x,/x)]'/® which lies at the heart
of the superposition was derived from an energy-
integral solution. Exact solutions for power-law
distributions in the form of equation (1) have
been determined in the preceding portion of this
paper. These solutions will be employed in
investigating the validity of equation (15).

Upon introducing the heat flux distribution

= bx™ into equation (15) and integrating, one
finds

Nug
Relpm = YR+ 1Y (16)
where
B+ 1,9 = B )

o+ 9

The 8 and I' respectively represent the 8 and T’
functions; numerical values of the latter are
available in various handbooks and tabulations.
It should be emphasized that the n appearing in
equations (16) and (17) need not be an integer.
As previously noted, C is to be chosen to
bring about agreement of the integral and exact
solutions for n=0. Corresponding to this
choice, the values of Nu,/Rel/*Prl/3 as computed
from equation (16) for Pr==1 are 0-61196,
0-70562, 0-85937, 0-96760 and 1-1315 respec-
tively for n = 1, 2,4, 6 and 10. Upon comparing
these with the exact solutions listed in Table 1, it
is seen that excellent agreement prevails. Indeed,
the deviations in any case are no more than 1-5
per cent. A similar level of accuracy is found to
exist for the other Prandtl numbers. The fore-
going comparisons offer strong support of the
accuracy of the superposition solution (15).

Arbitrary heat flux distribution, turbulent
The turbulent thermal boundary layer does
not lend itself readily to solution for a power-law
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heat flux distribution. However, the case of an
arbitrary heat flux distribution can be treated by
superposition, provided that the solution is
available for a step change in heat flux applied
downstream of the hydrodynamic leading edge.
The required step-function solution can be
derived by employing the usual semi-empirical
methods of turbulent flow. Fortunately, this
rather tedious task can be circumvented by
making use of a theorem recently stated by
Hanna and Meyers [10]. These investigators
have shown that if the delay factor correspond-
ing to a step-change in surface temperature is
[1 — (xo/x)t), then the delay factor for a step-
change in surface heat flux is [I — (xo/x)}. This
theorem holds if the form of the temperature
profiles is the same for the two problems. For the
turbulent boundary layer, Reynolds et al. [11]
have verified that the Seban-Scesa [8] delay
factor, [1 — (x,/x)?10]l/%, Jeads to results in good
agreement with experiment for the prescribed
temperature case. The corresponding delay
factor for the prescribed heat flux case is

[ — (xo/x)}2. (18)

With this and with the correlation* of refer-
ence [11], the surface temperature distribution
corresponding to a step-change in heat flux
applied at x, is

_ gx/k Xo] L9
To =T = 0-0296Re¥/5Pr375 [ N E] ’

X > Xo.

(19)

This equation is intended to apply for constant-
property, non-dissipative flow.

The generalization of equation (19) to apply
to cases of arbitrarily variable surface heat flux
is carried out along lines similar to those des-
cribed for the laminar case. The end result of
these operations is

x8/9/9k q(xo) dx,
0-0296 Rel/5Prd/s _[(x — Xo)8/9

0

Tw‘Too:

(20)

* The actual correlation contains a factor (7,,/T )" to
account for variable gas properties. In the present investi-
gation, this factor will be omitted in favor of a reference
temperature for evaluating the properties.
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Aerodynamic heating

In applications involving high-speed flow,
there may be appreciable dissipation of mech-
anical energy in the boundary layer. In account-
ing for this effect, it is customary to solve first
for the so-called adiabatic wall temperature Tgy.
This is the temperature that the surface would
achieve if the convective heat transfer were
locally zero. For the flow of gases over a flat
plate, it is customary to write

Taw — Tw = RU2[2¢y 21
in which R = Prl/2 laminar flow (21a)
R = Pr1/3 turbulent flow. (21b)

Then, with the adiabatic wall temperature in
hand, one may generalize equations (15) and
(20) to apply to flows with aerodynamic heating.
Indeed, it is only necessary to replace 7w by
Taw in the aforementioned equations. The fluid
properties in these equations are to be evaluated
at the reference temperature, e.g. Eckert [12].

SIMULTANEOUS CONVECTIVE AND
RADIATIVE HEAT TRANSFER

Consideration is now given to a flat plate that
exchanges heat by convection with a flowing
fluid and by radiation with the surrounding
environment. The fluid is assumed to be trans-
parent to radiation and is therefore necessarily
a gas.

The governing equations and their solution

Suppose that radiation arriving per unit time
and area at the plate surface from various sources
in the environment is described by quantities
er1, €r2,. . ., €ry. In general, the absorptance a of
the surface for each of these radiation quantities
may be different (especially if the spectral distri-
butions are different). If ep4p denotes the rate
at which radiant energy is locally absorbed per
unit time and area, then

2

The local emission of the plate surface per unit
time and area is esT }(x), where ¢ is the emittance.
In addition, for the sake of generality, one may
suppose that there is an energy flux e, that must
be transferred from the plate to the fluid and to
the environment (e.g. an internal heat source or

€RAD = X, 04€yi.
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heat sink). In general, both eg4p and e, may vary
with x.

In order that energy conservation be satisfied
at each point on the plate surface, it follows that
the convective heat transfer ¢ per unit time and
area is given by

q(x) = eran(x) — eoT(x) + ep(x). (23}

Equation (23) is a requisite for the preservation
of steady-state conditions. In the development
that follows, it will be assumed that (ep4p + €p)
is a known constant, to be denoted by e and
referred to as the total heat load. With this, the
foregoing becomes

q = e — eaT}x). (23a)

It may be noted that there is no essential dif-
ficulty in treating the case e = e(x). However, it
is natural to begin with e = constant; also, this
facilitates comparison with the analysis of
Cess [2].

Attention may now be given to determining
the surface temperature corresponding to the
heat flux distribution of equation (23a). For
laminar flow with aerodynamic heating, one
replaces T in equation (15) with Ty, and arrives
at

T

C/3 X3 g(xo)
Rel2pri3 k) (x — x0)%73

[

Ty — Taw = dx,
24y

Then, upon substitution of equation (23a) and
integration, there follows after non-dimensional
rearrangement

e
— - 1/2
o001 30 ()

X

b e #9(¢
- [ X _(_ )5)2/3 ¢ (25)

3

o
wherein 6 = Ty/Taw, X = (hrap/hunr)?. (26)

The 6 variable compares the wall temperature
at x with the adiabatic wall temperature due to
convective transport, equation (21). The X
variable is readily interpreted by displaying

hrap and huur
husr — (k|CX)ReY2PAB,  (27)

— 3
hrap = eo'Taw,
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From these, it is seen that X is proportional to x.
The hrap is a general measure of the strength
of the surface radiation and has the units of a
heat-transfer coefficient. Inasmuch as Ty is
independent of x, so is hrap. The hynr is the
local heat-transfer coefficient for laminar flow
over a plate with uniform heat flux; clearly,
hyur ~ x~172, Therefore, hrap/huur is a meas-
ure of the relative strength of the surface radia-
tion and the convection, and X has a correspond-
ing meaning. At the leading edge, hynr - ©
and hgpap/hurr = 0. With increasing down-
stream distances, hrap/hunr increases mono-
tonically.

The parameter e/ esT 2, compares the external
heat load with the rate at which energy is radiated
from a plate surface at temperature Tyy.

Consideration may now be given to solving
equation (25), which constitutes a non-linear
integral equation for the wall temperature distri-
bution 8(X). An exact closed-form solution can-
not be found; however, highly-accurate numeri-
cal solutions can be carried out without difficulty.
For this purpose, one divides the region between
X =0 and X = Xmax into N intervals AX =
Xmax/N. Xmax represents the largest X value at
which results are desired. Any X value in the
range of 0 << X < Xmax 1s characterized by
X = jAX; additionally, ¢ = iAX. The interval
AX is chosen sufficiently small to insure that
within a desired accuracy

G+ 1DAX 04(5) t+DHAX dé
J. ( X — 5)2/3 d¢ = 04 j ( XY — 5)2/3 28)
AX iAX
in which
Bt = J(6f + 04, ). (29)

With this, equation (25) becomes

J
e > B

[4
— 1/2
=14+ X {wqg
i=1

-9 —-G—i+ 1)”3]}- (30)

In applying equation (30), one uses a predictor—
corrector technique as described below. First of
all, it may be noted that 8(0) =1, and this is
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taken as the starting point of the computation.
Proceeding to the next point X =1 X AX
(i.e. j = 1), one writes
e
— 1/2
6, =1+ (AX) LJ4

aw

- 0‘} @1

5{{ is first evaluated as 62 = 1, and a value of 6,
is then computed. With this, one re-evaluates 0}
in accordance with the averaging indicated in
equation (29), and this leads to a corrected value
of 8. A second correction for 8; might be carried
out, but this was not necessary in view of the
small step size employed. Then, passing on to
the point X = 2 X AX, one re-applies equation
(30

e
%:LHMMW£G4+

aw

(2)-173

(1 — 29) — 0‘1} (32)

Inasmuch as 6 and 6; are known, 63 can be
computed in accordance with equation (29);
871 first evaluated as 62 With these, a tentative
value of 62 is computed from equation (32).
This is then utilized in conjunction with 6; to re-
evaluate 9%, and in turn, this permits the compu-
tation of a refined value of 6. The determination
of 03, 84, ... proceeds in a similar manner.

From the foregoing description and from
equations (31) and (32), it is evident that the
computation procedure makes repetitive use of
the third root of integers. Consequently, to
minimize the use of computer time, the third
roots were determined at the very beginning of
the computation and then stored. In addition,
it was found possible to increase the step size at
larger values of X without loss of accuracy.

Preliminary solutions for 8 as a function of X
were carried out for various step sizes. By study
of these results, one could select step sizes for the
final runs that would insure very high accuracy.
Indeed, in all cases, the final results are believed
accurate to at least one and perhaps two significant
figures beyond those shown in the forthcoming
plots. The presentation and discussion of results
will be delayed until after the computation
procedure for the turbulent case has been
outlined.
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For turbulent boundary-layer flow, one pro-
ceeds as in the foregoing, except that the basic
equations are now (20), (21) and (21b). Into
these, one introduces the convective heat flux
as indicated by equation (23a). The resulting
integral equation for Ty, can be rendered dimen-
sionless by defining a coordinate X = (hrap/
hyur)® and a temperature variable 8 = T3,/T 4.
Since hrap/huar ~ x5 for the turbulent case,
it follows that such an X is proportional to x.
However, this choice for the X coordinate is
impractical inasmuch as an exceedingly small
step size AX would be required for computations
at small X. Instead, one defines

(33)

wherein hr4p remains as stated in equation (27)
while Aupr is the heat-transfer coefficient for
turbulent flow over a plate with uniform heat
flux

x = hpap/hvunr

;IUHF == 0‘0296(k/x)Re§/5P;-3f5 (34)

It is evident that y ~ x1/5.

The governing integral equation is reduced to
a tractable form by a procedure identical to that
described for the laminar case. If y = jAy and
¢ = jAy, the algebraic approximation to the
integral equation for the turbulent case is

3
. e I3 ———
ettt o S
aw

=1

(P = 9 = (o= = PR G9)

The numerical treatment of this equation is
similar to that discussed in relation to equation
(30).

Distribution of surface temperature

Results for the surface temperature distribu-
tion have been computed as described in the
foregoing and are presented as solid lines in
Figs. 1 and 2. The first of these corresponds to
laminar flow and the second to turbulent flow.
The ordinate variable is the ratio of the local
surface temperature at position x to the adiabatic
wall temperature due to convection alone,
equation (21). The abscissa for the laminar case
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is proportional to x1/2, while that for the turbu-
lent case is proportional to x¥5. Further, the
abscissa can be interpreted as a ratio of radiative
to convective heat-transfer coefficients, as is
noted on the figures. The constant C in the
abscissa variable of Fig. 1 is the reciprocal of
the n = 0 entries of Table 1. The curves are
parameterized by e/ecT?2 . In addition to the
solid lines, other curves are presented in the
figures. These will be discussed later.

An overall inspection of the figures reveals
that the surface temperature may either increase
or decrease along the plate depending on the
magnitude of e/esT,!,. For values of this para-
meter greater than unity, the temperature in-
creases; the opposite variation occurs when the
parameter is less than unity. For the case of
e/ecT2, =1, it is seen that T, = Tu, at all
locations.

These trends may be made plausible by physi-
cal reasoning. In the absence of a heat load
(input) e, there is an energy loss from the
surface due to radiation. This heat must be
supplied to the plate surface by convection,
i.e. q ~ (Tw - Ta,w) < 0. Therefore, Tw < Taw.
Inasmuch as the convective coefficient decreases
with x at a faster rate than does g, it follows that
the difference between T, and T4 increases with
increasing x. For moderate heat loads e, the heat
loss due to radiation still requires a convective
heat transfer into the plate in order to satisfy
the local energy balance, equation (23a). Cor-
respondingly, Ty << Tay. When efecT2 =1,
the heat load is precisely in balance with the
surface radiation and the convection is not
called upon to transfer heat. For heating condi-
tions such that e/ecTj}, > 1, the surface tem-
perature must rise above Tgy in order that con-
vection and surface radiation may work together
to dissipate the larger heat load.

At the far right of each figure is an array of
horizontal line segments that are labelled
asymptotes. These apply to the condition
hrap/huar — oo, This implies that the convec-
tive heat transfer ¢ approaches zero, so that the
heat balance (23a) becomes e = esT,%. From
this, it follows that

Tw . e 1/4
mv - GUT:w

(36)



BOUNDARY LAYERS WITH PRESCRIBED HEAT FLUX 445

——PRESENT STUDY ————— h = Aper FOR ALL x
-—-— LIGHTHILL [1]
______ CESS il ——h=hyr FOR ALLx
11 l 13 [ T ] T T [ T ] T 11 | IR BRI l 1 l_
ol | ASYMPTOTES; |
| 2;—[ LAMINAR FLOW | e/eo T4 “_”—2_1:
- 2 i —
C 5= 15 n
I+ ) _ . - . 5

1-0 ]
T ‘ . |
Taw B . . _ ) 0-75 7
Fic. 1. Surface temperature 09— NG — e , . =
distribution for laminar flow - -
over a flat plate. ——
-5 4
08 _
O-?_ —= - O_ﬁ—_:
0.6_111!|11]111J!111111[111||1|!1f
0 02 04 06 08 s 1-0 I-2 -4
/7Rﬂ0= 60_7;»'
howe — (k/Cx)\Re)'? Pri'3
—Ill[llll[lllITI‘AS'YM'P,:.O‘TE'S]l
- 4 15
-o[| TURBULENT FLOW | e/ed 7, i
2

FiG. 2. Surface temperature distribution for
turbulent flow over a flat plate.

o7
—_Lo -
- ~— o -
- - CESS 2] \ig;
0.7_1 7 PRESENT STWDY) | | l Lo Q@s

0 02 04 06 08 10

ﬁ/MD - eo—rdw

howe 0-0296(k/x)Re >Pr'®



446

By inspection of the figures, it is seen that the
asymptotes are approached more rapidly for
cases in which e/ecT 2, is near unity.

In addition to the solutions of the integral
equations (solid lines, Figs. 1 and 2), auxiliary
approximate calculations have also been carried
out. These are based on the local energy balance,
equation (23a), into which has been substituted
q = h*(Tw — Taw). The convective coeflicient i*
will, in general, depend on the specific distribu-
tion of surface temperature or of surface heat
flux; consequently, /7* will not be known a
priori. Upon rearrangement, one finds

Tu(x) 7_§ﬁ) hrap  [Tulx)]* han L
Tau‘ 7 (€0T4 T(lll‘ /T*V C

an /1*
37

It is natural to seek solutions for the surface
temperature distribution corresponding to heat-
transfer coefficients for the two standard cases
of uniform heat flux (UHF) and uniform wall
temperature (UWT). Such solutions have been
carried out and are plotted in Fig. 1 as dash-dot
(UWT) and dash-double dot (UHF) lines. It is
seen that, in general, the results based on
hrur and hywr bracket the exact solutions
(solid lines) for the surface temperature distribu-
tion. Indeed, the bracketing curves form rather
close bounds on the exact solution. For
e/esT . <1, the computation based on /hyup
overestimates the local surface temperature
while that based on /Apwr underestimates the
local surface temperature. For e/eoT. > 1.
opposite findings apply.

For the turbulent case, the heat-transfer
coefficients for uniform heat flux and uniform
wall temperature are essentially identical. When
equation (37) is solved for the condition
h* = hyur = hywr and the results plotted in
Fig. 2, it is found that the points fall very close
to the solid curves that represent the solution of
the integral equation (35). Indeed, any differences
would be obscured during the preparation of ink
drawings. This finding reaffirms the well-estab-
lished physical concept that a turbulent boundary
layer has a “poor memory” relative to the details
of the upstream thermal boundary conditions.
It would thus appear that any additional solu-
tions for the convective-radiative heat-transfer
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problem under turbulent conditions could best
be carried out with the algebraic equation (37)
instead of the integral equation (35).

Figures 1 and 2 also contain curves which
represent the results of prior investigations by
Lighthill and by Cess. The former limited his
considerations to the laminar case with e — 0,
l.e. radiative cooling of an aerodynamically
heated plate. Series solutions for small and large
x are shown as long-dashed lines; these are con-
nected by a dotted curve that corresponds to an
interpolation. In general, Lighthill’s results lie
slightly higher than those of the present analysis;
but, the agreement is quite satisfactory.

Cess extended consideration to both laminar
and turbulent flows. Aerodynamic heating was
neglected, but the analysis is readily generalized
to include these effects. Cess’ results, originally
reported as Nusselt numbers, have been rephrased
in terms of the temperature ratio T,,/Tu, and
are plotted in Figs. 1 and 2 as short-dashed lines.
It is seen from the figures that these are valid
only in the range of small radiative effects; this
is precisely the condition for which the Cess
analysis was carried out.

CONCLUDING REMARKS

It may be of interest to point out the particular
advantage of using the prescribed-heat-flux
formulation in solving problems of the type
considered here. The essential point is that one
deals with linear differences in position
[1 — (x¢/x)}, for instance, equations (12) and
(19). Thus, after applying the mean value theorem
in equation (28), the integration results in a
simple function. On the other hand, had the
prescribed-wall-temperature formulation been
employed, much more complicated functions
would have been obtained at this point in the
analysis. This is because in the latter formulation,
the differences in position are non-linear, that is

(1 — (xo/x)}.
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Résumé—Une analyse est effectuée pour déterminer la distribution de température pariétale le long
d'une plaque plane soumise simultanément a un transport de chaleur par convection, a un échange
par rayonnement avec 'ambiance, 4 un échauffement aérodynamique, et & des sources ou des puits de
chaleur internes. On considére a la fois des écoulements de couche limite laminaire et turbulente.
Des résultats numériques sont présentés pour une large gamme des paramétres influents; ceux-ci
sont comparés avec des solutions simplifiées basées sur 'application locale des coefficients de transport
de chaleur pour une température pariétale uniforme et pour un flux de chaleur uniforme.

Le probléme est traité dans le cadre de la couche limite thermique avec un flux de chaleur imposé.
La partie initiale de I'article est consacrée a I'établissement de certains résultats généraux pour de
talles couches limites. Des solutions exactes sont obtenues pour des distributions de flux de chaleur
en puissance et sous forme de séries. Une solution approchée pour un flux de chaleur pariétal variant
arbitrairement est obtenue en superposant des solutions en marche d’escalier fournies par I'équation

intégrale de I'énergie.

Zusammenfassung—Um die Temperaturverteilung an der Oberfldche einer ebenen Platte zu bestimmen,
die gleichzeitig Wirmetibergang durch Konvektion, Strahlungsaustausch mit der Umgebung und
aerodynamische Erwidrmung erfihrt und bei welcher innere Wirmequellen und -senken auftreten,
wird eine Analyse ausgefiihrt. Es werden sowoh! die laminaren wie auch die turbulenten Grenzschicht-
strémungen betrachtet, Fiir einen weiten Bereich der bestimmenden Parameter werden numerische
Ergebnisse angegeben. Sie werden mit vereinfachten Losungen verglichen, die auf der lokalen Ver-
wendung der Wirmeiibergangszahl bei gleichférmiger Wandtemperatur und bei gleichférmiger

Wirmestromdichte beruhen.

Das Problem wird innerhalb der Rahmenarbeit iiber die thermische Grenzschicht mit vorgegebener
Wirmestromdichte behandelt. Der erste Teil der Abhandlung befasst sich mit der Aufstellung bestimm-
ter allgemeiner Resultate fiir solche Grenzschichten. Fiir Verteilungen der Wirmestromdichte
nach Potenzgesetzen und -reihen ergaben sich exakte Lésungen. Fir willkiirlich verdnderliche
Wirmestromdichten an der Oberfliche wird eine Néiherungsldsung abgeleitet, indem Losungen in
Form Stufenfunktionen, die sich aus der Integral-Energiegleichung ergeben, superponiert werden.

Annoranua—B gannoii paGore npoBeeH alan3 pacnpeleeHus TeMIePaTyPEL MOBEPXHOCTII
B0 NAOCKON MJIACTHHBL NPH OZHOBPEMEHHOM eCTBUM KOHBEKTHBHOrO IEPEHOCA Teria,
Jy4HCTOTO oGMeHa ¢ ORpyKaoueit cpejolt, aspoJIMHAMHYIECKOTO HArPeBa ¥ HANNYUH BHYTpeN-
HHMX HCTOYHMKOB M CTOKOB renya. PaccMoTpensl Kak JaMuHApHOe, TaR H TypOyaeHTHOe
TeueHHA B norpauuuHoM cioe. IlpejcraBneHsl YHCJEHHBE pPe3yabTaTH QA UHMPOKOTO
AMANaBOHA OCHOBHBIX TNAPAMeTPOB U AHC WX CPABHEHME ¢ YVHPOIIEHHHIMH PeHIeHMAMH,
MOAYICHHBIMU HA OCHOBE JIOKAJLHOTO HCMONLAOBaHMA KoadduiueHTOB Tenmoolmena IaA
0JHOPOIHO TeMIepaTYpPhl CTEHKN H OJHOPOXHOrO TEMJIOBOr0 TOTOKA.
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3aa4a pacCMATPUBAETCA B PAMKAX TEILJIOBOTO OTPAMYHOTO CIOA NPH 3aJAHHOM TEIIIOBOM

noroke. HawanpHas YacTh CTATHY NOCBALIEHA YCTAHOBJICHHI0 OIIpeReIEHHBIX OOIMX pesy-

JBTATOB [JIA TAKNX MOTPAHWYHBIX clioeB. II0JIyyeHBl TOYHBIE PelleHHA AJA pacnpefeleHui

TEIJIOBOrO TIOTOKA, 3a{aHHBIX CTENeHHBIM 3aKOHOM M B BuJe pasio:keHusa B pax. Ilomydeno

npuGaMKeHHOE pelIeHne JTIA MPOU3BOILHO M3MEeHAIIIe#ca BeIMYMHBL TEeILIOBOT0 NOTOKA HA

TIOBEPXHOCTH IYTEM CYIIePIO3UIMHN CTYIEeHUYATHX PellleHMi, MOJYyYeHHBIX U3 MHTETPaJbHOTO
YPaBHEHHMA BHEPTHUH.



